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Introduction

• Briefly explain what Merlin is and what it 
can do

• Make clear the tracking algorithms 
used, so comparisons with other codes 
can be made

• Show some pretty results
• Explain where we want to go



Merlin in a Nutshell

• Merlin is a C++ class library for doing 
charged particle accelerator simulations

• Current library has >300 classes
• Has a long (and dubious) heritage 

(APTkit, CLASSIC)
• Originally designed to study ground motion 

effects in BDS
• Now been extended to model, well, (almost) 

everything ☺
• More info: http://www.desy.de/~Merlin

Don’t Panic – this is not a talk about C++

http://www.desy.de/~Merlin


The Accelerator Model

• Supported Standard Components
– Drifts, Dipoles, Quads, Sextupoles, Octupoles
– BPM, Profile Monitor (Wire scanner)
– Solenoid
– RF acceleration (SW and TW structures)
– X and Y corrector dipoles
– X-Y corrector windings

(can be added to any multipole magnet)

• Non-Beamline Components
– Magnet movers, Magnet Supports, Girders

The Component Library is always growing…



The Accelerator Model

• All Accelerator Components 
have:
– An E-M field (Tesla, volts/meter)
– A physical aperture

[circular and rectangular currently supported]

– An accelerator geometry
[responsible for alignment, coordinate frame 
transformations etc.]

– Most support ‘channels’ [see later]



Particle Tracking Module

• 6-d particle tracking (ray tracing):

xi ∈ {x,x’,y,y’,ct,δ=∆p/p0}

• Particles assumed relativistic (β=1)
• Tracking uses 6-d second-order 

TRANSPORT maps up to sextupole:

xi = Rij xj + Tijk xj xk

• Higher-order multipoles modelled as 
chromatic thin-lens kicks at centre of element



Beam Energy and Tracking

• B fields stored (not Kn)
• Particle bunch carries 

its own reference
momentum (Pref)

• Particle δi referenced 
to Pref

• Pref used to calculate 
map (R + T)

Particle Bunch

Pref

Note: 〈Pi〉 = Pref (1+ 〈δ〉 )



Beam Energy and Tracking

• Special case: Sector Bend
• P0 for (R+T) taken from bend curvature 

and field: P0 = ecB/h
• δi are scaled accordingly:

• Fixed geometry (h=const)
• Changing B or Pref changes orbit
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Note: full second-order map for mixed function magnet plus pole 
face rotation and curvature included



Beam Energy and Tracking

• Sector Bend map expanded around 
‘matched’ momentum for given B field

• All other magnet maps are expanded 
about the bunch reference momentum
Pref



Beam Energy and Tracking
NLC FF Bandwidth

0

20

40

60

80

100

120

140

-3 -2 -1 0 1 2 3

DP/P (%)

Ve
rt

ic
al

 R
M

S 
b

ea
m

si
ze

 (n
m

)

Adjust Pref

Adjust dp/p

Small difference 
between adjusting
Pref and ∆p/p for 
FF systems 
(probably FD)



How acceleration is 
Modelled

• By default, cavities modelled by linear map in 
the transverse plane:
– TRANSPORT matrix + end field for TW
– ‘Chambers’ matrix for SW

• Matrix calculated for Pref
(no chromatic effects)

• Alternative: use matrix calculated for each 
particle (i.e. Pref (1+δ) )
– More accurate, but slow!
– No significant difference seen (so far!)



How acceleration is 
Modelled

• Longitudinal Phase Space
- Two Methods:
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Wakefields

• W|| and W⊥ modelled as impulse approximation
• Applied at exit of every cavity
• Longitudinal charge distribution estimated by 

binning particles (within ±3σz)
• Particles are re-binned after bends (when 

needed)
• All particles in a bin (‘slice’) receive same kick 

(no interpolation)
• For transverse wake, 〈x〉 and 〈y〉 of each bin is 

statistically calculated for each impulse



Wakefields
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Alignment

• Full 3-d alignment (x, y, z, θx, θy, θz)
• For θx, θy small angle approximation 

assumed
• Bunch is transformed into local 

component frame for tracking

Note: for tilted cavities, transverse RF kick and cross-
talk between W|| correctly model (I think!)



Alignment: nest frames

BPM Quad

YCor
Mover



Alignment: nest frames

BPM frame

QUAD frame

YCOR frame

MOVER frame

SUPPORT frame



Ground motion:
Girders and Supports

 

• Ground motion 
applied to 
‘Support 
Structures’

• ATL currently only 
spectrum
supported

Single
Support

 

Girder
Support



Tuning:
the Channel concept

• Tuning ‘knobs’ and algorithms all work 
via channels

• Channels mimic the control system
• Channels are ‘generic’; algorithms can 

be easily re-used with other devices



Tuning:
the Channel concept

Actuators

BPMSignals
Linear

Feedback
YCOR



Tuning:
the Channel concept

Actuators

BPMSignals
Linear

Feedback
MOVER



TESLA examples

• TESLA linac with 
coherent betatron
oscillation

• Once linear 〈yδ〉
correlation 
removed, ∆ε/ε <1%

• No filamentation
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TESLA Examples: DR→IP

• X-Y scatter plots 
at IP

• 35µm random 
‘vibration’ applied 
to all magnets

• Centroid jitter 
removed



TESLA Examples: DR→IP

• X-Y scatter plots 
at IP

• Adjusting bunch 
compressor RF 
phase by ±2.5°

z-δ plot



NLC examples: DR→IP
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Storage rings too!

• Thanks to Andy Wolski (LBL)
• Code to support DR studies:

– Closed orbit, tunes etc.
– Emittance calculations (Chao’s method)
– Dynamic aperture studies
– Realistic wiggler maps

(AW Merlin extensions, not in core library – yet!)



What’s next?

• More benchmarking with other codes 
See next two talks ☺

• Resolve NLC results
• Repeat for CLIC
• Studies of static and dynamic errors with 

tuning
– SLAC ground motion models (spectrums)
– Implement BBA modules 

DF steering written but not tested
– Implement tuning knobs (trivial)

• Start modelling ‘machine from start-up’
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